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Cakulation of the Complementary 
of Complex Argument 

Error functions of a complex variable arise in several areas of mathematical 
physics, notably in the dynamic thermoelastic response of solids to rapid heating 
[I]. In such problems the temperature field satisfies a diffusion equation, while t 
dynamic response is governed by hyperbolic (wave-type) equations. The 
forced osciilation is driven by the temperature changes caused by heat 
For example, the response of a thick spherical shell to internal thermal shock can 
be expressed in terms of exponentials and error functions of complex arguments [2]. 

No single, uniformly accurate approximate method exists for calculating the 
error function complement over the entire complex plane. Series expansions and 
approximation formulas have limited ranges of validity. The use of existing limited 
tables of the complex error function or related functions [3] requires bivariate 
interpolation for both parts of the complex function value. It is desirable to co 
computationa techniques in a single computer subroutine of general utility. This 
note describes a FORTRAN function subprogram for calculating the com~~.erne~- 
tary errcr function of a complex-valued argument at any point in the complex 
plane. 

The error function of complex argument is defined by 

erf(z) = --$ Jz exp(-- c2) d< 
?T 0 

for an arbitrary integration path in the plane z = x + iy. ‘The error function 
complement is defined by 

erfc(z) = - 
:,s: 

exp(-c2) &I = 1 - erf(z) 

where the integration path is subject to the restriction arg(j’) -+ d, ~ihh 
- ~14 < 8, < rr/4 as Re(<) + CO along the path [3]. 

The real and imaginary parts of erf(z) can be expressed as real line integrals in 
various equivalent forms depending upon the choice of integration path. These 
forms can be shown to lead to identical results, as they must by virtue of analyticit:; 
of erf(z> for finite z. In principle, values of erf(zj can be obtained by numerical 
evaluation of the defining real integrals. However, the integrands are oscillatory, 
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with frequencies which depend on the real and imaginary parts of z. Thus the nume- 
rical integration step size would have to be chosen as a suitable fraction of the 
period, which in turn depend upon the limit of integration; moreover, evaluation of 
accuracy would be difficult. 

Tabulations of the error function of complex argument are insufficiently dense 
for most purposes, and it is necessary to develop a rapid computational method 
for all values of z. Consider the integration path consisting of the line segments 
(0, x) and (x, x + iy). Then equation (1) can be expressed in the following form: 

erf(z) = -$J‘: exp(-E”) dc + -$= e@ JsY exp(y” - 2hq) tin. (3) 
0 

To obtain expressions for the real and imaginary parts of erf(z) from the real 
integrals equivalent to (3), Salzer [4] used the following approximate relation due 
to Dawson [5]: 

2 d; exp(v2) k 1 + 2 f exp(-n”/4) cosh(n$. 
72=1 

(4) 

The relative error of this approximation is less than 2 * 10-l’. 
In the present work a computational formula was obtained paralleling Salzer’s 

development, retaining the complex representation in (3) and using the exponential 
equivalent of (4). The first term on the right in equation (3) is the numerically 
well-known error function of real argument. Using equation (4) in the second term 
on the right in equation (3), one obtains the following result: 

erf(z) f erf(x) + ex~~~x2’ [ 1 - exp( -2ixy)] 

exp( - x2) 
+ 57 t exp(-n”‘4) n=l n2 + 4x” 

(4x + i(rz + 2ix) exp[(/z - 2ix)y] 

- i(n - 2ix) exp[-(n + 2ix)y]j. (5) 

The relative error in j erf(z)j using this result is estimated to be about 10-16. The 
error function complement can be calculated from the right member of equation (2) 
together with the foregoing result. When x = 0 the second term on the right in (5) 
must be replaced by its limit iy/n. 

A computer program was written to calculate the complementary error function 
of complex argument from equation (5) and the right member of (2), using the 
complex arithmetic feature available in FORTRAN IV Version 13 programming 
language. With this feature, complex numbers are regarded as pairs of real numbers 



corresponding to the real and imaginary parts. Appropriate ma~hi~~e-language 
subroutines are called to manipulate the real number pairs according to the ruies 
of complex arithmetic. 

In the computations, terms of the series in equation (5) are computed successivei;. 
The ratio of the square of the length of the incremental complex vector represented 
by the last computed term, to the squared length of the current sum vector, is 
compared with the square of a relative length error (ERR) prescribed at IO--“. This 
accuracy was chosen as reasonably consistent with that of single-precision real 
arithmetic on the computing equipment used (IBM 7094). in which reai constants 
have precision to 8 decimal digits. 

As z ---f 22 in / arg(z)i < ~r/4, erf(z) ---f 1. Since equation (5) leads to an estimat,ed 
relative error in / erf(z)I of 10-16, precision accordingly would be lost in erkc(r) 
for large z in this sector of the complex plane. Moreover, the available singk- 
precision subprogram ERF(X) is used to calculate the real compiementary error 
function erfc(x) which enters into the real part of erfc(z). For example at x = 3. 
erfc(x) = 2 . 10-j. With g-digit precision erfc(3) is calculated from 1 -- erf<~;~ 
with a relative error of 5 . 10-4. 

The complex asymptotic series [3] for erfc(z) is therefore used in the program for 
Re(z) > 3 and 1 arg(z)j ( x/4: 

erfc(z) 
exp(-z”) --- g (-- 1);“(217)! 

_____. 
z/n z ,(=@ !2!(2Z)“’ 

(6) 

At z = 3 the asymptotic series (real at this point) gives a relative error of about 
2 e lo--“. Precision improves rapidly for larger Re(z): where the relative error (E 
in j erfc(z)l is prescribed at lO-fi. Dawson’s approximation (4), leading to a relative 
error of 10-l” in (5), nowhere limits the numerical accuracy of the present calcula- 
tions, and indeed would be adequate for use with equivalent calculations in double- 
precision real arithmetic. 

Coding directly in complex arithmetic is considerably more concise than in 
equivalent real arithmetic, and simplifies application of numerical ~o~~ver~e~~e 
tests to terms of the series in (5) and to terms of the asymptotic series (6) as well. 
For values of I erfc(z)i as large as 106, only 15 terms of the series (5) are required for 
a relative error of 10~m6 in the magnitude of the result. 

The results of computations using the program were tested against values of the 
related function w(z) = exp(-z”) . erfc(-iz) tabulated to 6 decimal places 631. 
The program was compiled as a closed function subprogram CERFC(Z) to 
accept an arbitrary complex value of Z and return the desired complex-valued 
result to the calling program. The source-program listing for this function sub- 
program is available from the author. 
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